If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-100x+500=0
a = 3; b = -100; c = +500;
Δ = b2-4ac
Δ = -1002-4·3·500
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{10}}{2*3}=\frac{100-20\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{10}}{2*3}=\frac{100+20\sqrt{10}}{6} $
| 126=-3(7-5m) | | 10y-3=7y | | 3(4x+8)=17x+16-5x+8 | | 2x+13+x=180 | | −16n=−37 | | -126=-3(7-5m | | 5x-3(5x-8)=11 | | -2z^2+4z-5=0 | | -11x-7=25x-6(6x-7 | | x-(2*6=42 | | -x-(x+1)=6+7(-5x-1) | | 3(2p+5)-7=5p-9 | | 10z+5=3(2z-5 | | -12=5p-14-4p | | 7x-32=-67 | | 7+5(y-7)=16 | | 3(x-1)+7=4x+2-3(2-3) | | 7x−32=−67 | | 6x+4x-2=2(5x+2) | | 5x=15=45 | | x/8=180 | | 5-(m+12)=5m-1 | | 5x+3x–32+12=180 | | 8u^=72 | | 6-y+0.505y=0.32 | | (2n-4)(3n+5)=0 | | 2y^=32 | | 3d+4-2=+7+5 | | 5(3x+5)=-8+18 | | x-20=2x+60 | | 2-(x-5)=15 | | 7.3+0.4x=-6.3 |